Research Reports

Likelihood-based Statistics for Validating Continuous Response Models (RR 05-03)

The statistical theory of estimating and testing item response theory (IRT) models for items (questions) with discrete (correct or incorrect) responses has been thoroughly developed (recall that IRT is a mathematical model that is typically used to analyze test data). In contrast, the theory for IRT models for items with continuous responses has hardly received any attention. This omission is mainly due to the fact that, so far, the continuous response format has hardly been used by the testing industry. An exception may be the rating scale item format, where a respondent marks a position on a line to express his or her opinion about a topic. Recently, continuous responses have attracted interest as complementary information to accompany discrete item responses. One may think of the response time needed to answer an item in a computerized adaptive testing situation or of computer ratings of tasks performed in a simulated environment as continuous responses.

In the present report, an existing model for the analysis of continuous responses was extended to include a procedure for estimating the parameters in the model. Tests for evaluating the fit of the model were successfully evaluated. These tests can be used to detect problematic items and violations of assumptions of the model. The tests were also shown to have excellent control of their false positive error rate, as well as excellent ability to detect true effects.

Request the full report

Additional reports in this collection

researchers study paperwork and examine charts and figures on a tablet

Evidence to Support Validity Claims for Using LSAT Scores...

Law School Admission Test (LSAT) scores provide a standard measure of an applicant’s proficiency in a well-defined set of important skills associated with success in law school coursework. LSAT scores are also a strong predictor of first-year grades (FYG) and cumulative grade point average (CGPA) in law school. The most recent correlational study of LSAT results (2019) shows that LSAT scores are far superior to undergraduate grade point average (UGPA) in predicting FYG...

Understanding and Interpreting Law School Enrollment Data...

The Law School Admission Council (LSAC) has a long-standing commitment to diversity, equity, and inclusion in legal education and in the legal profession. In line with its mission to promote quality, access, and equity in legal education, LSAC is providing this report, Understanding and Interpreting Law School Enrollment Data: A Focus on Race and Ethnicity, to help law schools, admission professionals, and other legal education stakeholders understand how we are measuring who is the pipeline.